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Abstract—Mining cohesive subgraphs and communities is a fundamental problem in network analysis and has drawn much attention

in the last decade. Most existing cohesive subgraph models mainly consider the structural cohesion but ignore the subgraph

significance. In this article, we formulate a new model, called statistically significant clique, to mine significant cohesive subgraphs in

large vertex-labeled graphs. A statistically significant clique is a complete subgraph with a significance value exceeding a given

threshold. The subgraph significance is evaluated by a widely used metric called chi-square statistic. We study the problem of

enumerating all maximal statistically significant cliques. The problem is proved to be NP-hard. We propose an efficient branch-and-

bound algorithm with several elegant pruning strategies to solve our problem. We conduct extensive experiments on seven large

real-world datasets to show the practical efficiency of our algorithms. We also conduct a case study to evaluate the effectiveness of our

proposed model.

Index Terms—Clique, statistical significance, labeled graph, cohesive subgraph, big graph processing

Ç

1 INTRODUCTION

GRAPH models have been used to capture the relation-
ships among entities in a wide spectrum of applications,

such as social networks [1], [2], biological networks [3], [4],
and collaboration networks [5], [6]. A proliferation in graph-
based applications has steered research efforts toward the
challenges in managing and analyzing graphs. Discovering
cohesive subgraphs is a fundamental problem with numer-
ous applications like detecting social communities [7], [8]
and mining protein complexes [9]. This paper aims to mine
statistically significant cohesive subgraphs, which have
never been considered in previous studies. Generally, the
task identifies a set of densely connected subgraphswith cer-
tain properties beyond the standard distribution.

Many efforts have been made on extracting significant
substructures [10], [11], [12], [13] among the studies for

mining subgraph patterns. Several works study the problem
of frequent subgraph mining [12], [13], where a subgraph is
considered to be significant if its frequency exceeds a prede-
fined threshold. However, the subgraph frequency only
considers the structural property, while vertices in a tre-
mendous amount of real-world graphs are always associ-
ated with a set of labels or attributes. For example, in a
protein-protein-interaction network, each vertex represents
a protein, and the labels may represent protein functionali-
ties. To capture the label statistics in significant subgraph
mining, Arora et al. studied the problem of computing sta-
tistically significant connected subgraphs [14].

In statistics, the significance provides the evidence con-
cerning the plausibility of the null hypothesis, which
hypothesizes that the data distribution is only affected by
random chance. If we have evidence to reject the null
hypothesis, the corresponding result is considered statisti-
cally significant. In the statistically significant connected
subgraph model, the null hypothesis is that the labels on
each vertex are assumed to be assigned independently and
randomly from a fixed probability distribution. The devia-
tion between the actual labels and the expected labels meas-
ures the statistical significance and is computed via a
function called chi-square statistic [15], which has also been
used in many other works [14], [16], [17], [18]. The higher
the chi-square, the higher the statistical significance [12],
[14]. In this paper, we also evaluate the significance by the
chi-square statistic. Given a set of vertices U and their labels,
the chi-square statistic is formally defined as follows.

fðUÞ ¼
Xl

i¼1

ðyi � ypiÞ2
ypi

;

where l is the number of distinct labels, y is the total number
of all labels in U , yi is the number of the ith labels, and pi is
the expected frequency of the ith label. A higher chi-square
statistic means a higher deviation between the real and
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expected label distributions which may indicate some
intrinsic properties. For example, the numbers of male and
female staff are expected to be similar in a company. Given
the real numbers of them, a high chi-square statistic may
indicate some gender inequality in the company.

Clique is a fundamental and commonly used model for
cohesive subgraph detection [19]. An induced subgraph S is
a clique if there exists an edge between every pair of vertices
in S. The clique model has drawn much research attention,
such as enumerating maximal cliques [20], [21], [22], com-
puting the maximum clique [23], [24], and mining clique-
based subgraphs, e.g., signed cliques [25], [26], [27].

Our Model. Based on the concepts of chi-square statistic
and clique, we propose a novel significant cohesive sub-
graphmodel, which is called ðk; uÞ-significant cliques, in ver-
tex-labeled graphs. Given a size constraint k, a significance
threshold u, and a probability distribution P as the input, a
ðk; uÞ-clique S satisfies the following three properties: (i) S is
a clique in which every pair of vertices is connected; (ii) the
chi-square statistic of S is at least equal to u; and (iii) the num-
ber of vertices in S is no smaller than k. The first two proper-
ties support us to find significant cohesive subgraphs in the
graph, and the third property helps us avoid some small
graphlets like edges and triangles. We study the problem of
enumerating all maximal ðk; uÞ-significant cliques in a graph.
Given an integer k ¼ 4, a real value u ¼ 6 and a label proba-
bility distribution fpA ¼ 0:8; pB ¼ 0:2g, Fig. 1 shows an exam-
ple of all maximal ðk; uÞ-significant cliques.

Applications. The problem of enumerating all maximal
ðk; uÞ-significant cliques has many applications, including
but not limited to discovering influential research groups in
collaboration networks [28], detecting topic-centric commu-
nities in social networks [29], and revealing important func-
tional organizations in PPI networks [30].

Research Group Discovery in Co-Author Networks. In a co-
author network (e.g., DBLP), two researchers are connected
by an edge if they have a common publication. A researcher
may have several labels or attributes, and each label repre-
sents a conference or a journal where the researcher has a
paper published. Setting a relatively low expected fre-
quency for some high-ranking conferences or journals in a
research domain leads to a higher chi-square statistic for
groups with more such publications. Our model can be
applied to identify outstanding research groups with many
high-quality publications. We have conducted a case study
on DBLP to discover such research groups in Section 6.

Topic-Centric Community Detection in Social Networks. In
social networks, each user may have several labels repre-
senting the followed topics, like soccer and basketball. The

model can help mine topic-centric communities that have a
strong association with some specific topics (or features) far
beyond others. For example, in sports marketing, it is cru-
cial to locate the avid sports fans. Assume that we would
like to mine a set of pure “soccer” communities for recom-
mendations and advertisements. A straightforward method
is to collect all the vertices following “soccer” and compute
cliques in the induced subgraph. However, this method
does not consider other labels, and the resulting communi-
ties may also be highly interested in other sports. By setting
a suitable parameter, our model can find a set of communi-
ties whose members care about “soccer” far beyond other
sports.

Organization Mining in Biological Networks. In PPI net-
works, each protein is assigned several labels by its func-
tionalities. By setting specific parameters, our model can be
used to identify a set of biological organizations (closely
connected proteins) with some particular statistics far
beyond normal. The derived structures may play crucial
roles in certain biological processes.

Note that there have been several keyword-based com-
munity models in labeled networks. However, they cannot
easily cover our research problem and techniques. First,
existing works either cannot guarantee strong structural
cohesion [31], [32] or focus on other cohesion models like k-
core and k-truss [33]. To the best of our knowledge, we are
the first to study significant clique mining in labeled graphs
given the prevalence of the fundamental clique model. Our
model guarantees both the strongest structural cohesion
and flexible keyword significance. Second, several works
only accept an input graph and cannot support personal-
ized keyword (distribution) queries [31], [33], [34], [35], [36].
For example, Chu et al. [33] find cohesive subgraphs where
the common pattern is frequent in all vertices. The common
pattern is generated by the algorithm. Third, several key-
word-based community detection models accept a set of
keywords as the input and only consider the existence of
keywords [37], [38], [39]. Such models compute cohesive
subgraphs where each vertex covers as many given key-
words as possible. In these models, the importance of all
input keywords is always the same. By contrast, the statisti-
cal significance model provides an input of keyword distri-
bution. Thus, we can flexibly assign different strengths to
input keywords according to specific scenarios.

Challenges. It is challenging to compute all maximal
ðk; uÞ-significant cliques. First, the problem is NP-hard, which
is proved in Section 2.2 by showing that the maximal clique
enumeration is a special case of our problem. Second, the sig-
nificance constraint in the model is not anti-monotonic. In
otherwords, even thoughwe find a cliqueSwith a chi-square
statistic less than u, a sub-clique of S may still have a chi-
square statistic larger than u. As a result, we still need to check
every possible sub-clique ofS further. Therefore, the technical
challenges include how to correctly outputmaximal ðk; uÞ-sig-
nificant cliqueswithout any duplication and how to prune the
search space effectively.

Our Solution. Based on the concept of k-core [40] and
graph coloring [41] in existing studies, we propose a basic
branch-and-bound algorithm. However, the integer k is nor-
mally small to only filter out some small motifs, which
diminishes the pruning effectiveness of basic structural

Fig. 1. A labeled graph G and maximal ðk; uÞ-significant cliques in G
given k ¼ 4; u ¼ 6:0; pA ¼ 0:8; and pB ¼ 0:2.
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rules. To improve the practical efficiency, we observe an
upper bound for the chi-square statistic of a given vertex set
(Theorem 2). Based on the upper bound, we combine the
concepts of k-core and graph coloring and derive a vertex
reduction strategy with stronger structural pruning effec-
tiveness and a statistical pruning rule. We further extend
the ideas from vertices to edges and propose an edge prun-
ing strategy.

Contributions. We summarize the main contributions in
this paper as follows.

� An elegant significant cohesive subgraph model. We pro-
pose a novel subgraph model, called ðk; uÞ-significant
clique in labeled graphs. We prove that the problem
of computing all maximal ðk; uÞ-significant cliques is
NP-hard.

� An algorithm for significant clique enumeration.We pro-
pose a novel branch-and-bound algorithm to enu-
merate maximal ðk; uÞ-significant cliques without
any duplication.

� Several strategies to prune the search space. We propose
two effective pruning strategies from the perspec-
tives of both vertex reduction and edge reduction,
which take Oðm � log degmaxÞ and Oðm1:5Þ times,
respectively. m is the number of edges, and degmax is
the maximum degree.

� Extensive performance studies. We conduct extensive
experiments on seven real-world datasets to evaluate
the efficiency of our proposed algorithms. We also
conduct a case study to show the effectiveness of our
model.

Organization. The rest of this paper is organized as follows.
Section 2 introduces background knowledges and defines
the problem. Section 3 proposes a non-trivial baseline algo-
rithm. Section 4 gives several pruning strategies. Section 5
presents the final algorithm. Section 6 reports the perfor-
mance studies. Section 7 introduces related works, and Sec-
tion 8 concludes the paper. We omit the proofs for several
straightforward lemmas and theorems, which can be
obtained in the full version [42].

2 PRELIMINARY

2.1 Problem Definition

We consider an undirected labeled graph GðV;E;LÞ. V is
the set of vertices. E � ðV � V Þ is the set of edges. L assigns
one or more labels to each vertex from a label set L, i.e., L :
V ! S

v2V;Lv�LLv. We use n andm to represent jV j and jEj,
respectively. Given a vertex u, the neighbor set of u is
denoted byNðuÞ, i.e.,NðuÞ ¼ fv 2 V jðu; vÞ 2 Eg. The degree
of u is denoted by degðuÞ, i.e., degðuÞ ¼ jNðuÞj. A subgraph
SðVS; ESÞ is called an induced subgraph of G if VS � V and
ES ¼ fðu; vÞ 2 Eju 2 VS; v 2 VSg. A subgraph S of G is a cli-
que if every two vertices in S are connected, i.e., 8u; v 2
VS; ðu; vÞ 2 ES . The clique S is called a k-clique if there are k
vertices in S, i.e., jVSj ¼ k.

Given a set of vertices U 2 V , assume that l is the number
of distinct labels in U , i.e., l ¼ j S u2ULðuÞj. We have an
observed frequency vector Y ¼ fy1; y2; . . .; ylg, where y ¼Pl

i¼1 yi ¼
P

u2U jLðuÞj. Given a fixed label probability distri-
bution P ¼ fp1; p2; . . .; plg, the chi-square statistic [15] (also

called statistical significance [14]) of U is defined as follows.

fðUÞ ¼
Xl

i¼1

ðyi � ypiÞ2
ypi

¼
Xl

i¼1

y2i
ypi
� y: (1)

Example 1. Given the graph G in Fig. 1, we consider the
induced subgraph of fv5; v6; v8g. We have two A labels and
two B labels. We have l ¼ 2. The observed frequency vec-
tor is Y ¼ fyA ¼ 2; yB ¼ 2g, and y ¼ 4. Assume that the
probability distribution of the labels is P ¼ fpA ¼ 0:8; pB ¼
0:2g. The chi-square of fv5; v6; v8g is 4

4�0:8þ 4
4�0:2� 4 ¼ 2:25.

The chi-square statistic of a subgraph represents the devia-
tion of the observed label frequency from the expected fre-
quency distribution, which is a widely usedmetric to quantify
the statistical significance [15], [16], [17], [18]. Arora et al. [14]
show that the subgraphwith a large chi-square statistic is con-
sidered to be highly significant. Based on Eq. (1), we define a
new subgraphmodel, called ðk; uÞ-significant clique, as follows.

Definition 1. (SIGNIFICANT CLIQUE) Given a graph G, a probabil-
ity distribution P ¼ fp1; p2; . . .; plg, an integer k and a real
value u, a ðk; uÞ-significant clique is an induced subgraph C
that satisfies the following constraints:

� Clique constraint: C is a clique;
� Chi-square constraint: fðVCÞ � u;
� Size constraint: jVC j � k.

In Definition 1, the clique constraint ensures the sub-
graph is densely connected and can be a cohesive pattern or
a social community. The chi-square constraint ensures the
subgraph is highly significant in the given graph. The size
constraint filters out small resulting motifs in the ðk; uÞ-sig-
nificant cliques. The probability distribution P enables flexi-
bility to adjust the importance of the labels.

Definition 2. (MAXIMAL SIGNIFICANT CLIQUE) A subgraph C of G
is a maximal ðk; uÞ-significant clique if (i) C is a ðk; uÞ-signifi-
cant clique, and (ii) there is no ðk; uÞ-significant clique C0 in G
who contains clique C.

A ðk; uÞ-significant clique may contain several subgraphs
which are still ðk; uÞ-significant cliques. The maximality of
the model reduces the redundancy in resulting subgraphs.

Example 2. Fig. 1 shows an example of the maximal signifi-
cant cliques. Given k ¼ 4; u ¼ 6:0; pA ¼ 0:8 and pB ¼ 0:2,
all maximal (4,6)-significant cliques in G are marked by
gray. Note that if k ¼ 3, we have fðv11; v12; v13Þ ¼ 7:563.
As a result, the induced subgraph of fv11; v12; v13g is a
(3,6)-significant clique but not maximal.

We use ðk; uÞ-clique to represent the maximal ðk; uÞ-sig-
nificant clique for short when context is clear. Based on Defi-
nition 2, we define the research problem as follows.

Problem Statement. Given a labeled graph G, a probability
distribution P , an integer k and a real value u, we aim to
enumerate all maximal ðk; uÞ-significant cliques in G.

2.2 Hardness and Challenges

2.2.1 NP-Hard Time Complexity

We prove the hardness of our problem by considering a
closely related problem — maximal clique enumeration,
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which has been widely studied in the literature [43], [44],
[45], [46]. All maximal cliques are the results of a special
case of our problem. Specifically, given k ¼ 0 and u ¼ 0, the
chi-square statistic of an arbitrary vertex set is always no
less than u, and the problem of enumerating (0,0)-significant
cliques is equivalent to the problem of maximal clique enu-
meration. Given that the maximal clique enumeration prob-
lem is NP-hard, our problem is also NP-hard.

2.2.2 Non-Monotonicity

Given a set S, an anti-monotonic constraint means that if S
satisfies (or does not satisfy) the constraint, any subset of S
also satisfies (or does not satisfy) the constraint. For exam-
ple, the clique constraint in Definition 1 is anti-monotonic
since any subgraph of a clique is also a clique. The size con-
straint in Definition 1 is anti-monotonic since if a graph S
has fewer than k vertices, any subgraph of S also has fewer
than k vertices. However, the chi-square constraint in Defi-
nition 1 is not anti-monotonic. In other words, given a graph
S with fðVSÞ � u and an arbitrary subgraph S0 of S, we can-
not derive fðVS0 Þ � u and vise versa.

Example 3. Given the graph G in Fig. 1, assume that k ¼
4; u ¼ 6:0; pA ¼ 0:8 and pB ¼ 0:2. Considering the induced
triangle of fv12; v13; v14g, we have the chi-square value
fðv12; v13; v14Þ ¼ 5, which is less than the expected thresh-
old u. However, we cannot remove the vertices since an
induced supergraph of fv11; v12; v13; v14g has a chi-square
value 8.167. On the other hand, we consider the vertex set
fv1; v2; v10; v15, v17g, whose chi-square is 5 and less than u.
However, we still cannot remove the vertices since a sub-
set fv1; v2; v10; v15g has a chi-square value 7.563, which is
larger than u.

Without the anti-monotonicity, we cannot immediately
borrow the idea of existing algorithms for maximal clique
enumeration. Specifically, once finding a maximal clique C,
even fðVCÞ < u, it is possible that a sub-clique C0 of C satis-
fies fðVC0 Þ � u. Consequently, we cannot filter out C and
need to further check every possible sub-clique of C with no
fewer than k vertices. The method works but produces
numerous intermediate results since a ðk; uÞ-significant cli-
que may be involved in several maximal cliques. In addi-
tion, the number of cliques can be extremely large (up to
3n=3 in the worst case [45]), which makes the naive solution
costly in big graphs. Therefore, the main challenges are how
to avoid outputting the duplicated results and how to prune
the search space effectively.

3 A BRANCH-AND-BOUND ALGORITHM

3.1 Basic Structural Graph Reduction

To handle the challenges discussed in Section 2.2, we
give a non-trivial baseline algorithm in this section. We
start by introducing several basic pruning rules, which
can be easily derived from existing clique studies, like
k-clique enumeration [47] and the maximum clique
computation [24].

Core Based Pruning. The first structural pruning rule is
based on k-core, which is formally defined as follows.

Definition 3. (k-CORE) Given a graph G and an integer k, a
k-core in G is a maximal connected subgraph in which the
degree of every vertex is at least k [40].

Lemma 1. Given a graph G and a vertex u, u is contained in a
k-clique only if it is contained in a ðk� 1Þ-core [48].
Based on Lemma 1, all vertices not belonging to the

ðk� 1Þ-core can be safely removed before ðk; uÞ-clique com-
putation. Given an integer k, we can compute the ðk� 1Þ-core
by iteratively removing all vertices with degree less than k�
1. The running time is bounded by OðmÞ [49]. An example of
the 3-core in the graphG of Fig. 1 ismarked by gray in Fig. 2.

Graph Coloring-Based Pruning. The second structural
pruning rule is based on the concept of graph coloring.
Given a graph GðV;EÞ, a coloring of G is an assignment of a
color number, denoted by colorðuÞ, for each vertex u such that
two adjacent vertices share different colors, i.e., 8ðu; vÞ 2
E; colorðuÞ 6¼ colorðvÞ. Given a colored graph G and a sub-
graph S of G, we use colorsðSÞ or colorsðVSÞ to denote all dis-
tinct color numbers in S, i.e., colorsðSÞ ¼ fCj9u 2 VS;
colorðuÞ ¼ Cg.
Lemma 2. A graph G contains a k-clique only if there are at least

k distinct colors in G, i.e., jcolorsðGÞj � k [41].

Based on Lemma 2, we avoid enumerating ðk; uÞ-signifi-
cant cliques of a subgraph S if the number of distinct colors in
VS is less than k, i.e., jcolorsðSÞj < k. The pruning effective-
ness closely depends on the coloring result. The fewer distinct
color numbers, the more subgraphs can be pruned. However,
it is NP-hard to color a graphwith theminimumdistinct color
numbers [50]. Several heuristic methods have been proposed
for coloring graphs in practice, and a widely used one is the
greedy method following the graph degeneracy order [51].
Specifically, a vertex permutation fv1; v2; . . .; vng is a degener-
acy order if every vertex vi has the smallest degree in the
induced subgraph of fvi; viþ1; . . .; vng. Computing the degen-
eracy order takes OðmÞ time. The coloring algorithm pro-
cesses vertices in the reverse degeneracy order and greedily
assigns each vertex the smallest color number that is not the
same as that of any colored neighbor. The degeneracy-order-
based coloring can be conducted inOðmÞ time. A graph color-
ing for the graphG in Fig. 1 is provided in Fig. 2.

3.2 Computing Maximal Significant Cliques

The Key Idea. We propose a branch-and-bound algorithm,
called SigClique, to enumerate all ðk; uÞ-significant cliques.
Without loss of generality, we assume that the input graph
is connected. Given a set of vertices R initialized as V , we
aim to compute all ðk; uÞ-significant cliques in the induced
subgraph of R. We first identify whether G½R� is a

Fig. 2. A coloring and the 3-core of the graph G.
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ðk; uÞ-significant clique. If G½R� is not a valid ðk; uÞ-signifi-
cant clique, SigClique randomly picks a vertex u and divides
the search space into two subspaces: (i) the subspace of all
ðk; uÞ-cliques containing u, and (ii) the subspace of all
ðk; uÞ-cliques excluding u. Then SigClique recursively per-
forms the same strategy for each subspace. In each recur-
sion, we use I to denote the set of vertices that must be
included in the ðk; uÞ-cliques in R. I is initialized as ;. Con-
sequently, R consists of I and a set of candidate vertices,
which can be potentially included in the ðk; uÞ-clique. In
each recursion, we pick a vertex from the set R n I. We
immediately terminate the search if R ¼ I since R is not a
ðk; uÞ-clique and no subspace can be further explored.

If R is a valid ðk; uÞ-significant clique, we check the maxi-
mality of R by adding all possible common neighbors of R.
No matter whether R is maximal or not, we terminate the
current search space since all following ðk; uÞ-significant cli-
ques are subsets of R and can never be maximal.

Algorithm 1. SigCliqueðGðV;EÞ; u; kÞ
1: color G based on the degeneracy order;
2: EnumðV; ;; u; kÞ;
1: Procedure EnumðR; I; u; kÞ :
2: R all vertices in ðk� 1Þ-core of G½R�;
3: if R \ I 6¼ I then return;
4: if jcolorsðRÞj < k then return;
5: if R is a ðk; uÞ-significant clique then
6: if IsMaxðR;Tv2R NðvÞ; uÞ then output R;

// early termination

return;
7: if R ¼ I then return;

8: pick a vertex u from R n I;
9: EnumðI [NRðuÞ [ fug; I [ fug; u; kÞ;
10: EnumðR n fug; I; u; kÞ;
1: Procedure IsMaxðR;C; uÞ :
2: if C ¼ ; then return true;

3: pick a vertex u from C;

4: if fðR [ fugÞ � u then return false;

5: if !IsMaxðR [ fug; C \NðuÞ; uÞ then
6: return false;

7: if !IsMaxðR;C n fug; uÞ then return false;

8: return true;

The Algorithm. The pseudocode of SigClique is shown in
Algorithm 1. In addition to R and I, we input k and u to the
procedure Enum. In Line 2 of Enum, we reduce the graph by
computing ðk� 1Þ-core based on Lemma 1. Since all vertices
in I must be contained in the ðk; uÞ-clique, we terminate the
current search space if a vertex in I is removed in the
ðk� 1Þ-core computation in Line 3. Based on Lemma 2, we
count the number of distinct colors in R and terminate the
search if R cannot be a k-clique. Line 5 identifies whether R
is a ðk; uÞ-significant clique by checking the degree of each
vertex and the chi-square statistic of R. Line 6 checks the
maximality of R by invoking IsMax. Line 9 searches the sub-
space including u, where NRðuÞ represents u’s neighbors in
R. Line 10 searches the subspace excluding u.

In the procedure IsMax, R is the set of vertices to be
checked, and C is all common neighbors of vertices in R. In
Line 2, C ¼ ;means no candidate vertex can be added to R,

and R must be maximal. The maximality search is also
divided into two subspaces. Line 5 identifies whether R [
fug is maximal. Line 7 checks whether R is maximal when
excluding u from the candidate set.

Theorem 1. Algorithm 1 correctly computes all maximal
ðk; uÞ-significant cliques in the graph G.

4 STATISTICAL GRAPH REDUCTION

Even though Algorithm 1 successfully computes ðk; uÞ-cli-
ques without any redundancy, the pruning effectiveness is
still limited, especially in large graphs and given a small size
constraint. In this section, we study several pruning strate-
gies regarding the chi-square statistic. Section 4.1 formulates
a new cohesive subgraphmodel called ðk; uÞ-significant core.
Section 4.2 embeds the concept of graph coloring to the
ðk; uÞ-significant core, which improves the effectiveness of
both structural pruning and statistical pruning. Section 4.3
extends the idea of ðk; uÞ-significant core to prune edges.

4.1 Pruning via Significant Core

To support the statistical pruning over the graph, we first
give a key theorem as follows.

Theorem 2. Given a set of labeled vertices V , a probability distri-
bution P , two arbitrary subsets V1 and V2 with V1 [ V2 ¼ V
and V1 \ V2 ¼ ;, we have fðV1Þ þ fðV2Þ � fðV Þ.

Proof. We prove the theorem by showing f ¼ fðV1Þ þ
fðV2Þ � fðV Þ � 0. We expand f as follows based on
Eq. (1).

f ¼
Xl

i¼1

y21i
y1pi
� y1 þ

Xl

i¼1

y22i
y2pi
� y2 �

Xl

i¼1

y2i
ypi
þ y:

Given that y1 þ y2 ¼ y and y1i þ y2i ¼ yi, we transform
the formula as follows.

f ¼
Xl

i¼1

1

y1y2ypi
� ðy21iy22 þ y22iy

2
1 � 2y1iy2iy1y2Þ

¼
Xl

i¼1

ðy1iy2 � y2iy1Þ2
y1y2ypi

� 0:

We have f � 0, and the proof is completed. tu
Based on Theorem 2, we formulate a new cohesive sub-

graph model, called ðk; uÞ-significant core, to prune
unpromising vertices in the problem of ðk; uÞ-clique enu-
meration. Related definitions are given as follows.

Definition 4. (NEIGHBORHOOD SIGNIFICANCE) Given a vertex u,
the neighborhood significance of u, denoted by fnðuÞ, is the sum
of the significance of u and all its neighbors, i.e.,
fnðuÞ ¼ fðuÞ þP

v2NðuÞ fðvÞ.1

Definition 5. (SIGNIFICANT CORE) Given a graph G, an integer k
and a positive real value u, ðk; uÞ-Significant Core (SC for
short) is a maximal connected subgraph of G in which every
vertex u satisfies (i) degðuÞ � k, and (ii) fnðuÞ � u.

1. Here, we use fðuÞ þP
v2NðuÞ fðvÞ as fðu [NðuÞÞ requires much

more effort to compute, although the later is tighter.
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Based on Definition 5, we can prune vertices supported
by the following lemma.

Lemma 3. A maximal ðk; uÞ-significant clique must be contained
in a ðk� 1; uÞ-significant core.

Example 4. Fig. 3gives an example of the pruning result via
the (3,6)-significant core. The chi-square statistics of sev-
eral required label sets are given on the right of Fig. 3.
After computing the (3,6)-significant core, the vertices v7
and v16 are removed. Specifically, v16 is removed since
degðv16Þ < 3. For the vertex v7, we have fnðv7Þ ¼
fðv7Þ þ fðv3Þ þ fðv8Þ þ fðv9Þ ¼ 5:625 < 6. All the remain-
ing vertices have degrees no less than 3 and neighbor-
hood significance no less than 6. For example, the
neighborhood significance of the vertex v4 is 6.5.

Given a graph G, we can compute all ðk; uÞ-significant
cores by a method similar to k-core computation. We recur-
sively remove a vertex with degree less than k or neighbor-
hood significance less than u. If a neighbor v of u is
removed, we update fnðuÞ to fnðuÞ � fðvÞ. The time com-
plexity is analyzed as follows.

Theorem 3. Computing all ðk; uÞ-cores takes OðmÞ time.

4.2 Pruning via Colorful Significant Core

In this subsection, we further improve the pruning effec-
tiveness by embedding the concept of graph coloring in
ðk; uÞ-significant core. Compared with the significant core
model, we strictly prune more vertices in terms of both
graph structure and label statistics. From the structural
perspective, we can combine the degree-based bound
(Lemma 1) and the coloring-based bound (Lemma 2) as
follows.

Definition 6. (COLORFUL DEGREE) The colorful degree of a vertex
u, denoted by degcðuÞ, is the number of distinct colors in NðuÞ,
i.e., degcðuÞ ¼ jcolorsðNðuÞÞj.

Lemma 4. For any ðk; uÞ-significant clique C, we have
degcðuÞ � k� 1 for every u 2 VC .

Proof. We prove Lemma 4 by contradiction. We assume
that there exists a vertex u 2 VC whose degree is less than
k� 1. Then, we have jcolorsðNðuÞÞj < k� 1. According to
Lemma 2, NðuÞ cannot contain a ðk� 1Þ-clique, thus,
fug [NðuÞ cannot contain a k-clique. However, as C is a
ðk; uÞ-significant clique, for every vertex u 2 VC , we have
fug [NðuÞ contains a k-clique. That is a contradiction. tu

Example 5. We give an example in the colored graph G of
Fig. 2. Considering the vertex v6, the degree of v6 is 3.
However, the colorful degree of v6 is only 2, since there

are only two distinct colors in the neighborhood of v6.
According to Lemma 4, v6 cannot be in any ð4; uÞ-signifi-
cant clique.

From the statistical perspective, we combine the concepts
of neighborhood significance (Definition 4) and the color-
ing-based bound (Lemma 2) as follows.

Definition 7. (COLORFUL NEIGHBORHOOD SIGNIFICANCE) The col-
orful neighborhood significance of a vertex u, denoted by
fcnðuÞ, is the sum of significance of u and the maximum vertex
significance for each color inNðuÞ, i.e.,

fcnðuÞ ¼ fðuÞ þ
X

C2colorsðNðuÞÞ
max

v2NðuÞjcolorðvÞ¼C
fðvÞ:

Lemma 5. Given a ðk; uÞ-significant clique C, we have fcnðuÞ �
u for every u 2 VC .

Example 6. We give an example to explain Definition 7.
Considering the vertex v17 in Fig. 2, we have three distinct
colors in Nðv17Þ. For the yellow color, we have two verti-
ces v5 and v15 in Nðv17Þ. The labels of them are the same,
and the largest statistic for the yellow color is fðBÞ ¼ 4.
Each other color inNðv17Þ has only one vertex. As a result,
we have fcnðv17Þ ¼ fðv17Þ þ fðv5Þ þ fðv10Þ þ fðv3Þ ¼ 5:625.
By contrast, the neighborhood significance of v17 is
fnðv17Þ ¼ 9:625.

Based on Definitions 6 and 7, we give an extended ver-
sion of ðk; uÞ-significant core.
Definition 8. (COLORFUL SIGNIFICANT CORE) Given a colored

graph G, an integer k and a positive real value u, a Colorful
ðk; uÞ-Significant Core (CSC for short) is a maximal connected
subgraph of G in which every vertex u satisfies (i) degcðuÞ � k,
and (ii) fcnðuÞ � u.

Example 7. We give an example of the (3,6)-CSC in Fig. 4.
Two vertices v6 and v17 are removed from the graph. Based
on Lemmas 4 and 5, they can never be in any (4,6)-clique.

The pruning effectiveness of ðk; uÞ-CSC is guaranteed to
be stronger than that of ðk; uÞ-SC as shown below.

Theorem 4. A colorful ðk; uÞ-significant core must be contained
in a ðk; uÞ-significant core.

Proof. Given a colorful ðk; uÞ-significant core C, for each
vertex u 2 VC , we have degcðuÞ � k and fcnðuÞ � u. Obvi-
ously, degðuÞ � degcðuÞ � k, and fðuÞ � fcnðuÞ � u, thus,
C is contained in a ðk; uÞ-significant core. tu
Colorful SC Computation.Algorithm 2 presents the pseu-

docode for colorful ðk; uÞ-significant core computation. The
strategy is similar to computing k-cores. Line 3 initializes

Fig. 3. Pruning G via (3,6)-significant core. Fig. 4. Pruning G via colorful (3,6)-significant core.
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the colorful degree and the colorful neighborhood signifi-
cance for each vertex u. Line 4 adds u to the queue if it can-
not be in the ðk; uÞ-CSC. The procedure invalidðÞ is used to
identify the validity of a vertex according to Lemmas 4 and
5. After popping an invalid vertex u in Line 6, we update
neighbors of u if necessary. Let the color of u be C. In Line 9,
we decrease degcðuÞ by one if no vertex has the color C in
NðvÞ after removing u. In Line 10, let NCðvÞ be the set of all
neighbors of v with the color C. If u has the largest chi-
square statistic in NCðvÞ, let s be the second largest chi-
square statistic in NCðvÞ. We set s ¼ 0 if there exists only u
in NCðvÞ. We update fcnðvÞ to fcnðvÞ � fðuÞ þ s. We do not
change fcnðvÞ if u is not the vertex with the largest chi-
square statistic in NCðvÞ.

Algorithm 2. CSCðG; u; kÞ
// fnðuÞ ¼ fðuÞ þP

v2NðuÞ fðvÞ, fcnðuÞ is colorful fnðuÞ,
degcðuÞ is colorful degðuÞ

1: Q initialized an empty queue;
2: foreach u 2 V do
3: compute fcnðuÞ; and degcðuÞ;
4: if invalidðuÞ then Q:pushðuÞ;
5: while Q 6¼ ; do
6: u Q:popðÞ;
7: foreach v 2 NðuÞ do
8: if invalidðvÞ then continue;
9: update degcðvÞ;
10: update fcnðvÞ;
11: if invalidðvÞ then Q:pushðvÞ;
12: remove u and all connected edges;

1: Procedure invalidðuÞ :
2: if degcðuÞ < k then return true;

3: if fcnðuÞ < u then return true;

4: return false;

Implementation and Complexity Analysis. The key step in
Algorithm 2 is to efficiently maintain the colorful degree
(Line 9) and colorful neighborhood significance (Line 10) of
each vertex. For the colorful degree of a vertex u, we use a
hash table to store the number of vertices for each color in
colorsðNðuÞÞ. Initializing the hash table for u takes OðdegðuÞÞ
time, and locating the value for a specific color number
takes constant average and amortized time.

Next, we discuss the implementation to update the colorful
neighborhood significance. For each color C 2 colorsðNðvÞÞ,
we sort all vertices with the color C in a non-increasing order
of their chi-square statistics, which takes OðdegðvÞlog degðvÞÞ
time. Given an invalid neighbor u, we also use a hash table to
locate u in the sorted list and mark the position of u as empty.
If u is not the first vertex in the corresponding color, fcnðvÞ
does not need to be updated. If u is the first vertex, we itera-
tively search the following positions with the same color until
finding a nonempty vertex w. We update fcnðvÞ to fcnðvÞ �
fðuÞ þ fðwÞ, where fðwÞ ¼ 0 if w does not exist. Note that it
may take several movements to find w. However, the total
number of operations for each vertex v in Line 10 of Algorithm
2 is bounded by OðdegðvÞÞ since we always move forward to
locate the second largest chi-square statistic.

Example 8. In Fig. 5, we give an example of the data struc-
ture to maintain fcnðv15Þ in the graph of Fig. 2. v15 has six

neighbors with three distinct colors. fcnðv15Þ is initialized
as the sum of fðv15Þ and the chi-square statistics of all the
first vertices of distinct colors. Assume that the vertex v6
is removed, and we need to update fcnðv15Þ. We first use
the hash function to locate the the position of v6. By check-
ing the previous vertex, v6 is not the first vertex in the
table with the same color. Therefore, we set the position
of v6 as empty and do not change fcnðv15Þ.
We provide the theoretical analysis of Algorithm 2 in the

following theorem.

Theorem 5. The time complexity of Algorithm 2 is Oðm �
log degmaxÞ, where degmax is the maximum degree in the graph.
The space complexity of Algorithm 2 is OðmÞ.

4.3 Pruning via Significant Truss

Recall that Section 4.2 extends ðk; uÞ-SC and strengthens the
vertex pruning rule. In this subsection, we will strengthen
the ðk; uÞ-SC from the perspective of edge reduction. In
other words, we consider whether two connected vertices
can be in the same ðk; uÞ-clique or not. The lemma for the
structural edge reduction is given as follows, which further
applies the k-core concept to the ego-network of each vertex.

Lemma 6. Given a k-clique C and an arbitrary vertex u 2 VC ,
for every vertex v 2 NCðuÞ, the vertex v is contained in a
ðk� 2Þ-core of G½NðuÞ� [23].

Theorem 6. Two vertices u and v cannot be contained in the
same ðk; uÞ-clique if v is not in a ðk� 2Þ-core of the neighbor-
hood subgraph G½NðuÞ�.
Based on Theorem 6, if the vertex v is not in a ðk� 2Þ-core

of G½NðuÞ�, we remove the edge ðu; vÞ, which guarantees
that u and v cannot be enumerated in the same clique. Given
the OðmÞ time to compute the k-core, a straightforward
method to recursively remove all unpromising edges in
Theorem 6 takes Oðm � hmaxÞ time, where hmax is the largest
number of edges in neighborhood subgraphs. To remedy
the cost, we give the following lemma.

Lemma 7. Given a vertex u and a vertex v in NðuÞ, the degree of
v in G½NðuÞ� is equivalent to the number of triangles that con-
tain the edge ðu; vÞ.
Based on Lemma 7, removing all the edges not satisfying

the condition in Theorem 6 is equivalent to computing the
k-truss in graph, which is formally defined as follows.

Definition 9. (k-TRUSS) Given a graph G and an integer k, a
k-truss is a maximal connected subgraph in which every edge is
contained in at least k� 2 triangles [52].

Let S be the maximal subgraph such that for each pair of
connected vertices u and v in VS , v is in ðk� 2Þ-core of
G½NðuÞ�. Then, S is a k-truss of G.

Example 9. We consider the graph in Fig. 6. Given the ver-
tex v12 and k ¼ 4, the degree of v15 in the neighborhood

Fig. 5. The data structure for v15 to maintain fcnðv15Þ.
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subgraph of v12 is 0. In other words, there is no triangle
containing the edge ðv12; v15Þ. Therefore, v12 and v15 can-
not be in the same ð4; uÞ-clique according to Theorem 6.

Similar to the neighborhood significance, we define the
support significance for the statistical edge reduction.

Definition 10. (SUPPORT SIGNIFICANCE) The support significance
of an edge ðu; vÞ, denoted by fnðu; vÞ, is the sum of fðu; vÞ and
the chi-square statistics of all common neighbors of u and v,
i.e., fnðu; vÞ ¼ fðu; vÞ þP

w2NðuÞ\NðvÞ fðwÞ.
Lemma 8. Given a ðk; uÞ-significant clique C, we have

fnðu; vÞ � u for every edge ðu; vÞ 2 EC .

Example 10. We consider the edge ðv4; v9Þ in the graph of
Fig. 6. There are two common neighbors — v3 and v8. We
have fnðv4; v9Þ ¼ fðv4; v9Þ þ 1:125þ 0:25 ¼ 5:458. Based
on Lemma 8, the edge ðv4; v9Þ cannot be in any ðk; uÞ-sig-
nificant clique if u > 5:458.

The support of an edge ðu; vÞ, denoted by supðu; vÞ, is the
number of triangles that contains ðu; vÞ. Based on Defini-
tions 10 and 9, we define a new statistical cohesive subgraph
model as follows.

Definition 11. (SIGNIFICANT TRUSS) Given a graph G, an integer
k and a positive real value u, ðk; uÞ-Significant Truss (ST
for short) is a maximal connected subgraph of G in which
every edge ðu; vÞ satisfies ðiÞ supðu; vÞ � k� 2, and ðiiÞ
fnðu; vÞ � u.

Example 11. An example of the pruning result by applying
(4,6)-significant truss is given in Fig. 6. The edge ðv12; v15Þ
and all the edges connected to v4 are removed.

The following theorem shows that ðk; uÞ-ST is guaran-
teed to have stronger pruning effectiveness than ðk; uÞ-SC.

Theorem 7. A ðk; uÞ-significant truss must be contained in a
ðk� 1; uÞ-significant core.

Proof. Given a ðk; uÞ-significant truss C and an arbitrary
vertex u 2 C, for each neighbor v 2 NðuÞ \ C, we have
fnðu; vÞ � u (Lemma 8). Thus, fnðuÞ � u. Also, we have
supðu; vÞ � k� 2 by which we can get degðuÞ � k� 1. So,
C is contained in a ðk� 1; uÞ-significant core. tu
ST Computation. We give the pseudocode for computing

ðk; uÞ-significant truss in Algorithm 3. The idea is similar to
that of truss decomposition [52]. The complexity of Algo-
rithm 3 is summarized below.

Theorem 8. The time complexity and space complexity of Algo-
rithm 3 are OðamÞ and OðmÞ, respectively.

Proof. Lines 1–5 initialize the support and the support signifi-
cance of each edge. The time complexity of enumerating all

triangles is OðPðu;vÞ2E minðdegðuÞ; degðvÞÞÞ, i.e., Oða �mÞ,
where aða < m0:5Þ is the graph arboricity and equals the

minimum number of forests to cover all edges in the

graph [53]. Lines 6–8 takes OðmÞ time. We update neces-

sary edges after ðu; vÞ is removed in Line 10. We use a hash

set to maintain all neighbors of each vertex. As a result, the

time complexity for Lines 9–20 is Oða �mÞ. The total time

complexity is Oða �mÞ. Note that we never store any trian-
gle during the algorithm, thus the space complexity is

OðmÞ. tu
Remark: Similar to Section 4.2, we can further embed the

color-based bound in the concept of ðk; uÞ-significant truss
and improve the pruning effectiveness. However, maintain-
ing such colorful supports and statistics for each edge incurs
large space usage and processing time. Therefore, we only
compute ðk; uÞ-significant truss in our final algorithm.

Algorithm 3. STðG; u; kÞ
1: supðu; vÞ  0; fnðu; vÞ  fðu; vÞ;
2: foreach enumerated4u;v;w 2 G do
3: supðu; vÞ  supðu; vÞ þ 1;
4: fnðu; vÞ  fnðu; vÞ þ fðwÞ;
5: repeat two lines above for ðu;wÞ and ðv; wÞ;
6: Q initialized an empty queue;
7: foreach ðu; vÞ 2 EG : invalidðu; v; u; k� 2Þ do
8: Q:pushððu; vÞÞ;
9: while Q 6¼ ; do
10: ðu; vÞ  Q:popðÞ;
11: if degðuÞ > degðvÞ then swap u and v;
12: foreach w 2 NðuÞ do
13: if w 2 NðvÞ then
14: if invalidðu;w; u; kÞ then continue;
15: supðu;wÞ  supðu;wÞ � 1;
16: fnðu; wÞ  fnðu;wÞ � fðvÞ;
17: if invalidðu;w; u; kÞ then
18: Q:pushððu;wÞÞ;
19: repeat five lines above for ðv; wÞ;
20: remove ðu; vÞ from EG;
21: remove all isolated vertices from VG;

1: Procedure invalidðu; v; u; kÞ :
2: if supðu; vÞ < k� 2 then return true;

3: if fnðu; vÞ < u then return true;

4: return false;

5 THE FINAL ALGORITHM

Our final algorithm to enumerate maximal ðk; uÞ-significant
cliques is given in Algorithm 4.We reduce the input graphG
by computing the ðk� 1; uÞ-CSC and the ðk; uÞ-ST in Line 2
and Line 3, respectively. The order of CSC and ST does not
affect the result. However, as CSC requires less computation
than ST , we apply CSC first. Different from SigClique, the
recursive enumeration procedure Enum	 in SigClique	 com-
putes relaxed colorful ðk� 1; uÞ-significant cores (RCSC) in
Line 3 instead of ðk� 1Þ-cores (Line 2) and color numbers
(Line 4) of Enum.

Relaxed CSC. Given a graph G, an integer k and a real
value u, let S and S0 be the vertices in ðk; uÞ-SC and
ðk; uÞ-CSC, respectively. An induced subgraph of S00 is

Fig. 6. Pruning G via (4,6)-significant truss.
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called a relaxed colorful ðk; uÞ-significant core if S0 � S00 �
S. The motivation of computing RCSCs is to hold the same
OðmÞ time complexity as k-core computation but bring
stronger pruning effectiveness.

Recall that in Algorithm 2 to compute ðk; uÞ-CSCs, the
dominating cost is to sort the neighbors of each vertex,
which is used to efficiently update the colorful neighbor-
hood significance (Fig. 5). To reduce the time complexity
from Oðm � log degmaxÞ to OðmÞ, we do not update the color-
ful neighborhood significance fcn for each vertex in the iter-
ation but just remove all vertices u with fcnðuÞ < k in the
first round. Specifically, we modify Algorithm 2 to compute
RCSCs in the following three parts. First, in Line 3, we addi-
tionally compute fnðuÞ. Second, we replace Line 10 with
“update fnðuÞ”. Third, we additionally check whether
fnðuÞ < u in the procedure invalid. As a result, we derive a
subgraph which satisfies the conditions of SC but possibly
contains some vertices u with fcnðuÞ < u. Due to the space
limitation, we omit the detailed pseudocode of RCSC. With-
out the sorted data structure, the time complexity of RCSC
reduces to OðmÞ, and the pruning effectiveness is at least
the same as Line 2 and Line 4 in Enum.

Algorithm 4. SigClique	ðGðV;EÞ; u; kÞ
1: color G based on the degeneracy order;
2: CSCðG; u; k� 1Þ;
3: STðG; u; kÞ;
4: Enum	ðV; ;; u; kÞ;
1: Procedure Enum	ðR; I; u; kÞ :
2: RCSCðR; u; k� 1Þ;
3: if R \ I 6¼ I then return;
4: if R is a ðk; uÞ-significant clique then
5: if IsMaxðR;Tv2R NðvÞ; uÞ then output R;

6: return;

7: if R ¼ I then return;

8: pick a vertex u from R n I;
9: Enum	ðI [NRðuÞ [ fug; I [ fug; u; kÞ;
10: Enum	ðR n fug; I; u; kÞ;

6 EXPERIMENTS

In this section, we evaluate the efficiency and effectiveness of
our proposed algorithms. We implement our algorithms
with four versions according to the pruning techniques,
namely SigClique, SigClique-SC, SigClique-CSC, and SigClique	.
SigClique is the Algorithm 1 with basic k-core and graph col-
oring reduction techniques. SigClique-SC utilizes the signifi-
cant core technique to prune the unpromising vertices.
SigClique-CSC is the algorithm with the colorful significant
core pruning rule. SigClique	 contains all the pruning techni-
ques. We also implement kClist, a variant of the k-clique list-
ing algorithm [47]. We add our significance computation
and maximality testing to make it able to enumerate sigcli-
ques. All the algorithms are implemented in C++, and all the
experiments are conducted on a Linux machine with
3.7 GHz Xeon CPU and 64 GBmemory.

Datasets. We evaluate our algorithms with seven real-
world datasets as showed in Table 1. EUmail is a communica-
tion network that contains the email sending and receiving
information from a large European research institution.

Amazon is a co-purchasing network from Amazon.com,
where the vertices represent products, and the edges
between them mean the two products are frequently pur-
chased together. DBLP is a co-authorship network in which
each vertex represents an author, and there is an edge
between two vertices if they have co-authored at least three
papers. Both Youtube and Hyves are social networks. CiteSeer
and Patent are citation networks. On each graph, we ran-
domly assign each vertex with 1-3 labels chosen from a 4-
label alphabet. EUmail, Amazon, Youtube, and Patent are down-
loaded from the Stanford Large Network Dataset Collec-
tion.2 CiteSeer and Hyves are downloaded from the Koblenz
Network Collection.3 DBLP is extracted from the computer
science bibliographyDBLP.4

Parameters.Our algorithms have two parameters, namely u
and k. The parameter u is selected from the set f8; 10; 12; 14g
with the default value u ¼ 10, and the parameter k is ranging
from f3; 5; 7; 9g with a default value k ¼ 5. Unless otherwise
specified, a parameter is set as the default value when we
vary the other one. Regarding the efficiency evaluation, we
prepare four labels S ¼ fA;B;C;Dg. We randomly and inde-
pendently assign a set of labels in S for each vertex in the
graph. We assign the same proportion for all labels, and the
expected label distribution isP ¼ f0:25; 0:25; 0:25; 0:25g.

6.1 Efficiency Evaluation

Exp-1: Overall Efficiency of Maximal Significant Clique Enumer-
ation. Table 2 compares the running time of SigClique	 with
SigClique and kClist under the default parameter setting. On
the right side, we also show the number and the maximum
size of corresponding maximal significant cliques. We can
see that SigClique	 is the fastest on most datasets. Compared
to SigClique, the speedup in EUmail is small (from 8 seconds
to 7 seconds) for the following reasons. First, EUmail has the
smallest size in all datasets, and the improvement room is
limited. Second, the average degree in EUmail is relatively
small, which means the basic k-core pruning has been very
effective. On Patent, SigClique	 takes about 151 seconds while
SigClique cannot finish in 5 hours. kClist is faster on Amazon

and CiteSeer as both datasets have small core values and
numbers of cliques, which means the listing can be fast. On
other datasets with larger core values and numbers of cli-
ques, our SigClique	 is much faster.

TABLE 1
Network Statistics (degmax is the Maximum Degree, c

is the Core Value)

Dataset n m degmax c

EUmail 265,214 420,045 7,636 37
Amazon 334,863 925,872 549 6
CiteSeer 384,413 1,751,463 1739 15
DBLP 556,533 1,311,766 373 25
Youtube 1,134,890 2,987,624 28,754 51
Hyves 1,402,673 2,777,419 31,883 39
Patent 3,774,768 16,518,948 793 64

2. https://snap.stanford.edu/
3. http://konect.cc/networks/
4. https://dblp.uni-trier.de/
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Exp-2: Running Time of Different Pruning Strategies With
Varying Parameters. We evaluate the running time of our
algorithms by varying the input parameter k and u. Due to
the space limitation, we only report the results on two repre-
sentative datasets, i.e., Youtube and Patent. The results on
other datasets perform similar trends. Given the default k ¼
5, we vary u from 8 to 14 in Figs. 7a and 7b. We only have
the line for SigClique	 on Patent since the algorithms cannot
finish in 5 hours under other settings. We can see a down-
ward trend for the algorithms on both Youtube and Patent

when u increases. On Patent, the running time of SigClique	 is
about 1.25 hours when u ¼ 8 and drops to 25 seconds when
u ¼ 14. Fig. 7b also reveals the effectiveness of our several
pruning techniques. SigClique is the slowest algorithm under
all u values since it only uses the basic k-core and the graph
coloring pruning rules to reduce the search space.
SigClique-SC starts to consider statistical pruning, which is a
little faster than SigClique. When u is small, the running time
of SigClique-SC is similar to SigClique, because the degree
pruning dominates in the algorithm. The gap between
SigClique-SC and SigClique proves the effectiveness of the
significant core model. SigClique-CSC is the second fastest
algorithm in the figure since it adopts a stronger pruning
model than SigClique-SC. The gap between SigClique-CSC
and SigClique-SC proves the effectiveness of the colorful sig-
nificant core model. SigClique	 contains all optimizations,
which is the fastest. The gap between SigClique	 and
SigClique-CSC proves the effectiveness of the significant
truss model.

Given the default u ¼ 10, we vary k from 3 to 9 in Figs. 7c
and 7d. The results are similar to those when varying u. For
example, on Patent, SigClique	 takes 175 seconds and 12 sec-
onds when k ¼ 3 and k ¼ 9, respectively. In Fig. 7d, the run-
ning time of SigClique is almost the same as that of
SigClique-SC when k is large, because u does not change and
the degree pruning is the dominating rule. Fig. 8 shows the
running time of SigClique	 on Patent and Youtube while vary-
ing the u and k.

Exp-3: Number of Vertices After Reduction. To further eval-
uate our pruning techniques, we report the number of verti-
ces after performing the reduction rules (e.g., core,
significant core, colorful significant core, and significant
truss) and before invoking the Enum procedure in Fig. 9. As
shown in Figs. 9a and 9b, when varying u, we can see that
the number of vertices for SigClique never changes since
only the structural pruning is performed in SigClique. Note
that even though the significant truss is an edge pruning
model, many vertices become isolated and are removed
during the edge removal. The results show that our final
pruning techniques are extremely effective. For example, in
Fig. 9a, the number of vertices is about 194 thousand when
u ¼ 8 but drops to only about 17 thousand when u ¼ 14.

Exp-4: Number of Maximal Significant Cliques. We report
the number of maximal significant cliques under different
parameters in Fig. 10. The number of results gradually
decreases when u increases from 8 to 14 on both datasets.
For example, in Fig. 10a, we have over 12 thousand maximal
(5,8)-significant cliques and 154 maximal (5,14)-significant
cliques on Patent. In Fig. 10c, we see a sharp drop from k ¼ 7
to k ¼ 9. That is because there exist a larger number of
(7,10)-cliques or (8,10)-cliques on Patent.

TABLE 2
Overall Running Time of Enumerating on All the Datasets
and the Number and the Maximum Size of Corresponding

Maximal Significant Cliques

Dataset SigClique SigClique	 kClist # sigcliques kmax

EUmail 8 s 7 s 13 s 1198 15
Amazon 362 s 2 s 1 s 31 6
CiteSeer 340 s 8 s 2 s 137 9
DBLP 224 s 74 s 204 s 1388 23
Youtube 469 s 86 s 138 s 6036 16
Hyves 1605 s 219 s 525 s 998 14
Patent - 151 s 177 s 1790 9

Fig. 7. Running time of different algorithms by varying u and k.

Fig. 8. Running time of SigClique	 by varying u and k.

Fig. 9. The number of vertices after pruning by varying u and k.
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Exp-5: Scalability Testing. We evaluate the scalability of
our final algorithm SigClique	 on Patent with the baseline
SigClique as a comparison. The results on other datasets
show similar trends. We vary the graph size and density by
randomly sampling vertices and edges from 20% to 100%,
respectively. When sampling vertices, we derive the
induced subgraph of the sampled vertices, and when sam-
pling edges, we select the incident vertices of the edges as
the vertex set. The results are shown in Fig. 11. We do not
have results of SigClique under several settings since it can-
not finish in 5 hours. The results show that our algorithm is
scalable to large graphs. In Fig. 11a, the time of SigClique	 is
0.5 s when sampling 20% vertices and increases to 151 sec-
onds finally.

6.2 Case Study on DBLP

To evaluate the effectiveness of our model, we conduct a
case study on DBLP and compare it with the maximal clique
model. We generate a collaboration network for the DBLP,
where an edge connects two researchers if they have at least
three co-authored publications. Regarding the vertex labels,
we select the publication data for each researcher from three
major conferences in the database area — SIGMOD, PVLDB,
and ICDE over the last decade. We assign each vertex the
label that indicates the author has a published paper on the
corresponding conference. Specifically, for each conference
every year, given a researcher u, we assign u a conference
name if u has a publication in the conference and an empty
value ; otherwise. Note that the assigned labels can be
repeated for each researcher.

For example, assume that u has one SIGMOD publica-
tion, two PVLDB publications, and no ICDE publication in

one year. The added labels in such a year for u are
fSIGMOD;PVLDB;PVLDB; ;g. Given the impact factor of
these conferences, we expect the proportion of label fre-
quencies for SIGMOD, PVLDB, ICDE, and ; (no paper pub-
lished) as 1 : 2 : 3 : 30. The rationale is that we give a
relatively low expected frequency for the highest-ranked
conference. If a researcher does not have any publication in
the last decade, they will have thirty ; labels. Intuitively, a
significant clique with a large chi-square value in our setting
may represent a research group with many high-ranked
conference publications.

In Figs. 12a, 12b, and 12c, we show all the maximal signif-
icant cliques containing the Prof. Jiawei Han with the
parameters k ¼ 5 and u ¼ 500. The parameter setting is
application-oriented, where generally, the larger the k or u,
the fewer the resulting subgraphs. As we can see, there are
three ð5; 500Þ-cliques reported by our model. The chi-square
statistics of the results in Figs. 12a, 12b, and 12c are 828.639,
589.864, and 722.331, respectively.

In comparison, we also enumerate all the maximal cli-
ques containing Prof. Jiawei Han with at least 5 vertices.
There are 33 resulting subgraphs, including two 7-cliques,
four 6-cliques, and 27 5-cliques. Due to the large result size,
we show some representatives of them in Fig. 13. We can
see that the number of maximal cliques is much more than
that of the ð5; 500Þ-cliques. We find that the main research
interests of many resulting authors do not lay in the data-
base area. For example, Prof. Tarek F. Abdelzaher, Prof. Su
Lu, and Dr. Shaohan Hu may be mainly interested in the

Fig. 10. The number of maximal (u, k)-cliques.

Fig. 11. Scalability testing on Patent.

Fig. 12. The maximal (5, 500)-significant cliques of Prof. Jiawei Han on
DBLP graph.

Fig. 13. The maximal cliques containing Prof. Jiawei Han on DBLP graph
with at least 5 vertices. (a) and (b) are 7-cliques. (c)-(f) are 6-cliques.
(g) and (h) are 5-cliques.
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Internet of Things, Cyber-Physical Systems, and Mobile
Computing since they have contributed a lot to the corre-
sponding research area. However, they all have co-authored
only one PVLDB paper in the past decade. According to his-
torical publications, they should be excluded if we want to
find significant database communities.

We have a consistent conclusion when considering the
chi-square statistics of the resulting maximal cliques. In
Fig. 14, we group all the 33 maximal cliques (with size
at least 5) containing Prof. Han into five groups by corre-
sponding chi-square statistics. We can see that the chi-
square statistics of most results are relatively low, which
means the resulting communities have rather less signifi-
cance in the database area. For example, there are 25
results whose chi-square statistics lay in the interval
(0,200]. By contrast, all the resulting three (5,500)-signifi-
cant cliques reported by our model have much higher
chi-square statistics. Note that the three maximal (5,500)-
significant cliques are also included in the results of
maximal cliques.

7 RELATED WORKS

Significant Sub-Structures on Graphs. Many real-world appli-
cations rely on exploiting statistically significant sub-struc-
tures on graphs, which include significant paths [54],
trees [55], and subgraphs [12], [13]. Zhang et al. propose a
sampling method based on modularity to detect significant
communities on graphs [56]. He et al. utilize the p-value
bound to develop a local search algorithm to find significant
subgraphs [57]. A brief survey on significant sub-structures
can be found in [58]. However, most previous works are tai-
lored to unlabeled graphs that ignore the label information
on vertices. Arora et al. propose a statistically significant
connected subgraph model, which depicts the label figure
with chi-square statistics [14]. This model may not be appli-
cable to our problem, as the connection between the nodes
inside a connected subgraph may be very loose.

Community Modeling. The community models over graphs
have been extensively explored. Communities are often mod-
eled by a group of densely connected nodes. In the literature,
various community models and algorithms have been pro-
posed, which include clique [24], [43], [44], k-core [40], [51], k-
truss [52], k-clan [59], k-plex [60], and so on. In recent years,
more models for community detection that consider graph
label information have also been developed. Notable examples
include the k-core-based attributed communitymodel [37], the
truss-based attributed community model [38], the keyword-
centric attributed community searching model [39]. However,

all the above models never consider the statistical significance
of the discovered community, which cannot be directly
applied to our problem.

Maximal Clique Enumeration. The clique model has a
wide range of applications. The enumeration of all maxi-
mal cliques in a graph has long been a popular problem in
graph data mining. Many existing works have been put for-
ward to study the problem. Most of them are based on a
backtracking diagram [44], [45], [46]. Tomita et al. [45] pro-
pose a pivoting technique which is proved to be worst-case
optimal. [46] further improves the time complexity of max-
imal clique enumeration on sparse graphs. Jin et al. [61]
propose an approach combining a hybrid data structure
and a new pivot selection rule to accelerate the enumera-
tion. [43] and [62] propose I/O efficient and distributed
algorithms, respectively. Chang et al. [20] proposes an
algorithm to progressively compute maximal cliques in
polynomial delay.

8 CONCLUSION

In this paper, we formulate a new model, called maximal
ðk; uÞ-significant clique, to capture statistically significant
cohesive subgraphs in large labeled graphs. We propose a
novel branch-and-bound algorithm and several effective
pruning rules to enumerate all maximal ðk; uÞ-significant cli-
que. Extensive experiments are conducted to show the effi-
ciency of our algorithms.
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